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Abstract

Single core systems had arrived to a bottleneck and the enhancement has become
limited, but the applications that are developed these days need high speed computers
with multi processors to solve more complex and larger problems. To achieve this, we
need efficient allocation strategies to allocate and deallocate processes attached to
such systems. Processor allocation strategies can be affected by the processors’
topology, which can impact system performance in terms of job turnaround time and
system utilization. In this thesis, we propose to enhance the job turnaround time and
system utilization using a higher dimensional topology thus improving the system
performance with low additional cost. Higher dimensional topologies have more links
between nodes. This will not only reduce the message passing overhead but also will
increase the degree of contiguity between processors, and it is expected to increase
the probability of successful allocation and hence improves the system performance
in terms of both job turnaround time and system utilization. Simulation evaluation
shows that the performance of the system is improved while increasing the dimensions
of the topology from 2D to 5D without increasing the number of processors.
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Chapter 1: Introduction
1.1lintroduction:

Parallel computers are widely used for many applications that could not be run
efficiently on a single core system. Supercomputers have many cores that run together
to make job turnaround time much smaller than that in the single core systems, where
the job turnaround time is the time that the job spends in the system from arrival to
departure. However, the number of processors is not the only factor that influence the
speed of supercomputers; the topology pf the communication network is of special
importance in this regard. Cores or processors in supercomputers are arranged in
shapes called topologies that can handle issues related to communications and
bandwidth [38].

Allocation of processors to a certain task can be contiguous or non-contiguous. In
contiguous allocation, processors allocated to a job are physically contiguous and have
the same shape as the job request, while in non-contiguous allocation, a job can
execute on multiple disjoint smaller sub-meshes rather than always waiting until a
single sub-mesh of the requested size and shape is available [38].

Contiguous allocation strategies are motivated by security issues and low message
overhead since the distance between the cooperated processors is almost zero, but it
suffers from internal fragmentation and external fragmentation, which affects on
system performance in terms of system utilization and job turnaround time, where
system utilization is the percentage of processors that are utilized over time. Internal
fragmentation occurs when more processors are allocated to a job than it requires,
where external fragmentation occurs when there are sufficient number of processors
to satisfy a job request but they are not allocated to it because they are not contiguous
[38]. Among the previous non-contiguous allocation strategies, paging is one of the
simple and flexible non-contiguous allocation strategies that can be controlled by the
page size in order to offer some contiguity and thus alleviate processor fragmentation
[42].

The 2D and 3D topologies are widely used in multicomputer systems. Many
applications were designed for these topologies. However, the 2D mesh networks are
more wildly used because of its simplicity and scalability [5, 12, 22]. Two-dimensional
mesh systems are a very good choice for many applications such as dot matrix
multiplication and image processing because they are shaped in the real world as 2D
mesh systems [40]. The shape of the 2D mesh topology is rectangular. Figure 1 shows
a squared 2D mesh, where width and height are the same (the same number of
processor in each side).
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Figure (1): Example of 8x8 mesh system

If the topology is square, then it can be described as K-ary N-cube which can be
represented as N = k™ — (n = LogkN) [43], where n is the number of dimensions and
k is the number of processors in each dimension and N is total number of processors
in the system [43]. In case of 32 x 32 2D mesh system, it can be represented in k —
aryn — cube as follows N = 322. However, if we increase k to 5 dimensions, it
becomes 4x4x4x4x4, which is a 5D network, where each dimension has 4 processors
and the k — ary n — cube formula becomes1024 = 45, In this case, k =4 andn=75
and N = 1024. This is shown in figure 2, which means that we can convert the 2D to a
5D network. This conversion implies more links and more paths to deliver messages
faster and also paths becomes shorter.
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Figure (2): Example of 5D network for 25 = 32 processor [39]

1.2 Modern 5D Supercomputers :

Many of modern super computers were designed as 5D mesh connected
multicomputers and took place in TOP 500 where this list classified as super computers
and this is based on powerful of computation and below are examples of these modern
supercomputers.

1.2.1 IBM MIRA supercomputer :

IBM MIRA is a supercomputer that placed in Argonne National Laboratory that built as
5D mesh-connected supercomputer, where it contains 786,432 cores that consumed
3.9-Megawatt, system physical size is 1,632 feet. This system has 768 TiB of memory
and its speed reaches to more than 10 petaFLOPS, IBM MIRA Ranked 3 on TOP500
when built [49].
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1.2.2 Fermi Supercomputer :

Fermi is a supercomputer that placed in CINECA, Casalecchio di Reno, Italy which is
sponsored by ministry of education for universities and research. Fermi built as 5D
Tours-connected supercomputer, where it contains 10.240 compute nodes and
163.840 cores that consumed 822 Kilowatt with 160 TiB of memory, where its speed
is more than 2 petaFLOPS, Fermi ranked 7th on TOP500 when built [50].

1.3 Interconnection networks

Many interconnection networks are proposed for multicore systems, some of them
were wildly used because they are cheap and simple. The topology of the network
effects on overall network cost (latency and turnaround time), where latency is the time
that the message takes to travel through the network from source to destination [38].

1.3.1. 1D, Line or Ring topology :

As shown in figure 3, this topology consists of the number of processors that are
shaped in line or ring where each processor has up to two neighbors and also up to
two links or edges. This topology suffers from large number of nodes that messages
have to pass through to arrive to its destination and thus increases the turnaround time,
the system latency and power consumption and hence lower the reliability [38].

1.3.2. 2D Torus or Mesh topology :

As shown in figure 4, this topology consists of a number of processors that are shaped
in mesh where each processor has up to 4 neighbors and also up to 4 links or edges.
This topology has better performance than the 1D topology, because of the more links
and more neighbors that make the system exchanges messages faster [38]. When
additional link is added between each ends, then it becomes tours and in such case,
the number of neighbors for each processor is 4, however mesh topology suffers from
high diameter, which is the distance between the farthest two processors in the
network [3].

p i
/ -

| | | ]

- -

Figure (4): Example of 2D topology of 3x3 = 9 processors

www.manaraa.com



1.3.3. 3D Cube and 4D hypercube topologies :

3D and 4D topologies as shown in figures 5 and 6 have more dimensions. In case of
3D (cube), the node or processor can be represented in 3 coordinates (x,y, z), where
each processor has up to 6 links or edges in case of 3D mesh and exact 6 links in case
of 3D tours, which makes performance better than the 2D mesh or tours [1]. In case of
4D (hypercube), there are 4 dimensions and the nodes or processors are represented
by 4 coordinates(x, y, z, w), where each processor has up to 8 links or edges in case
of mesh and exact 8 in case of tours. These extra dimensions can give us more options
for system design and hence more links to deliver messages faster and hence
bottleneck avoidance. Moreover, the diameter is lower than that of 3D, but it is more
complicated and have more issues in scalability where it makes 4D is limited in use
and thus is more suitable for only small systems with small configuration changes [3,
4].

Figure (6): Example of 4D topology of 2* = 16 processors
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1.4 Communication Patterns :

In non-contiguous allocation strategies, processors within a job need to send and
receive messages from each other's. In this thesis, we use two different patterns for
communication, All-To-All and Near-Neighbor.

1.4.1 ALL-To-ALL communication pattern :

In this communication pattern, all processors need to transmit messages to all other
processors which produces much messaging overhead, so this communication pattern
is considered as a weak point for the non-contiguous allocation strategies. All-To-All is
common communication pattern and it is used for many and important applications
such as matrix-multiplication [18].

1.4.2 Near Neighbor communication pattern :

In this communication pattern processors need to transmit messages to its neighbors
only which produces less messaging overhead than all-to-all communication.
Moreover, the possibility of message interference is much smaller than that in all-to-all
communication. Near Neighbor is very common communication pattern and it is used
to simulate many of physical cases such as wave propagation and heat [37].

1.5 Motivational contribution :

Modern Huge systems need more powerful allocation strategies. The current systems
use efficient allocation strategies but the performance of these strategies is limited for
huge systems, and this is due to the higher communication overhead that results when
the number of processors is increased in these systems. In this thesis, we aim to adapt
these strategies to be applicable for modern huge systems.

To the best of our knowledge, there is no proposed approach for paging non-
contiguous allocation strategy that is implemented for interconnection networks with
dimensions (d) greater than 3. Therefore, the contribution of this thesis is to revisit one
of the existing non-contiguous allocation strategies for interconnection networks
with d > 3. Simulation evaluation shows that the performance is increased for high
dimensions topologies. This is due to faster turnaround time and higher system
utilization achieved and to the lower diameter when d > 3.
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Chapter 2: Related work
2.1 Related work:

Many of non-contiguous allocation strategies are proposed for both 2D and 3D
topologies such as paging [42], Random [42] and MBS [42], where these strategies
are tested and evaluated based on synthetic and real workload models using
simulation. In the following subsections, we will shed a light on these allocation
strategies.

2.2 Allocation Strategies :

When a job enters the system, it is allocated to a group of processors to be executed.
The way the system selects the set of processors to be allocated for a job request is
called processor allocation strategy, which aims to avoid processor fragmentations as
much as possible. However, there is no any allocation strategy that can eliminate the
fragmentations without any additional cost [40].

2.2.1. Multiple Buddy Strategy (MBS) :

Multiple Buddy Strategy [42] is a non-contiguous allocation strategy, it is better than
the older version (2D buddy strategy) which has more external and internal
fragmentation [42].

This strategy maintains a degree of contiguity between allocated processors [42], This
strategy builds the initials blocks by dividing the original mesh into small square shaped
meshes with number of processors in each side is power of two, such as 32x32 or
42x42 with different total number of processors, and these blocks (sub-meshes) are
stored as records in a list called free block record (FBR), where the (FBR) is a list that
contains zero or more blocks, and each block in the (FBR) is represented as < x,y,p >,
where (x,y) represents the coordinates of the blocks and (p) represents the number
of processors in each side, where the total number of processors in one sub mesh is
p%. If p > 1then the block is divided into smaller blocks such as< x,y,§>,< x +

~,y,5>and < x,y +Z,% > These blocks (buddies) are stored in an ordered list called

block_list and a variable called block_num is used to store the number of these blocks.
The total number of free processors in the system is stored in a variable called AVAIL
and the job is allocated only if the number of requested processors by the job is less
than or equal to AVAIL [42].

2.2.2. Random Processor Allocation Strategy :

This strategy chooses the processors randomly. It works only on the number of
processors that the job needs. If the available number of processors meet the required
number of requested processors, then it will let the job to be allocated in the system
with randomly chosen processors but without considering the contiguity condition.
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This leads to high system utilization, where the system often busy but in the other hand
message passing overhead may become very high and this makes job to stay longer
in the system, and hence the job turnaround time is increased. In this strategy,
allocation only fails if the number of available processors in the mesh system is less
than the number of processors requested by the job [42].

2.2.3. Paging Processor Allocation Strategy :

In paging allocation strategy, the system is divided into pages, so the job requests a
specific number of pages, where page size is the total number of processors in each
page [22, 42].

Since paging strategy divides the system into pages that have in each side a number
of processor 2P%9¢-sZ¢ nage becomes the unit of allocation, where the total number of
processors (n) are calculated as follow:

n = (Zpage_size) d

Where page_size is a positive integer > 0 and d is the number of dimensions [42].
When d increases, the strategy shows better performance and this is due to lower
diameter and average communication distance of the systems with higher dimensions
[35].

In paging strategy, there is a list called free page list (FPL). FPL is a data structure that
includes an index that represents the available free pages in the system and also it
includes the coordinates of these pages [42]. The number of allocated pages for a job
that requests a number of processors (k) is calculated as follow:

Number of pages = 1 k/n 7 [42]. n is the number of processors in each page.

Paging strategy has been selected in this study because it has been shown in [30, 51]
to perform well as compared to other strategies.
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Chapter 3: Paging allocation strategy on 5D topology

Most of multicomputers interconnection networks are built as K-ary N-cube or similar
to K-ary N-cube, when all of the interconnection network dimensions are equal then
the network is represented as K-ary N-cube, the following section is a brief description
for some of K-ary N-cube properties [44].

3.1 K-ary N-cube :

k —aryn — cube [9, 43, 44, 47] is a graph were every node in this graph can be
denoted by n — coordinates with base k, where n is number of dimensions and k is
the number of nodes in each dimension.

3.1.1 K-ary N-cube Properties :

The total number of nodes in k — ary n — cube system is k™.

There is a K sub cubes in k — ary n — cube systems where the number of edges for
each sub cubes connected to each other's is k™ where k > 3 and k™! when k = 2.

Every node in k — ary n — cube has the same degree (number of edges that connected
to the same node) were the degree is n for k = 2 and 2n where k> 3.

The total number of links (edges) in k — aryn — cube is nk™ ! where k=2 and nk"
where k > 3

3.2 Preliminaries :

In this thesis, we assume the system is a 5D mesh-connected system, which is
denoted by S(X,Y,Z,W,I), where X is the height of the system, Y is its width, Z is its
depth and W, I are the fourth and fifth dimensions. Our system can be viewed as k —
aryn —cube by making K =X =Y =72 =W =1 and make it torus rather than mesh
(extra round link). Each node can be found in our system with five coordinates as
n(x,y,z,w,i), where 1 < x < X,1<y<Y,1<z<Z1<w<Wandl1l-Zc<
i < 1. In other words, 1<x,y,z,w,i <k , were each node in the system are
connected to exact 10 neighbors (2n,2x5 = 10). The total number of system nodes
are N = (XxYxZxWxI), which in our case N = K® and K = 9 and total number nodes

in our system is N = 9° nodes. Figure 7 shows our target system.
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As shown in figure 8, 5D has 7 links in corner where always this point has less
communications links, but in figure 9 there is exact 10 links in corner in 5D sub cube,
and this is for tours mesh, where every node has the same number of communications
links.
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Figure (8): 5D sub cube communication links in case of mesh

11
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Figure (9): 5D communication links in case of turs

3.3 Pagingin :

In our target system, page_size is 0 which is the best choice to eliminate the internal
processor fragmentation [47].

3.3.1 5D Paging Initialization :

Every node in our system is a page, since 2° = 1. Initially, every node is free and it is
placed in FPL (Free Pages List) with its coordinates. Figure 10 shows how to initiate
the FPL.

12

www.manharaa.com




Procedure System_initialize(K)
begin
i=0,j=0k=01l=0m=0;
page_size = 0;
page_processors = 2Pegesize,
AVAIL = Total_Processors / page_processors;
block_num = 0;

FPL = empty();

for(i=0i < K;i++)
for(j=0j <K;j++)
for (k

0,k <K, k++)
for(l=0;1l < K; 1+ +)
for(m = 0,m < K, m++)

index = block_num;
block_num + +;
FPL.add(index,m, L k, j,i);
end

Figure (10): FPL initialization.

3.3.2 5D Paging Allocation :

As we mentioned before, every processor or node is a page in our system since page
size is zero, so, for every process request we need to know the number of requested
processors and its unique id process_id. Initially, the system will check its own pages
if they can cover the requested number of processors or not, and if not, the system will
never let the process to be allocated and that called system insufficiency.

If the system size is larger than the requested number of pages, then the system will
check the number of free available pages (AVAIL). If the AVAIL is larger than the
requested number of pages, then the system will let the process to be allocated.
Moreover, the system will insert the process_id and the requested pages into the data
structure called Task_list, and then the system will remove the requested pages from
the Free Page List (FPL) and the AVAIL will be decreased by the number of requested
pages. Otherwise, the process will wait until the AVAIL is larger than the number of
requested pages. Figure (11) shows the procedure for the process allocation.

13
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Procedure Page_5D_allocate(process_id, process_size)

begin

if (avail > process_size)

{

Task_list.add(process_id,pages);
Avail = Avail — processg;,,.;
FPL.remove(pages);

Take_another_process();

Else
{

Take_another_process();

}

end

Figure (11): paging process allocation

14
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3.3.3 5D Paging Deallocation :

Every allocated process has a unique identifier called process_id, and then each of the
allocated pages for this process is marked with process_id and these pages are
inserted into a list called Task_List, which means that these pages are busy and
allocated for this process until its completion. When the process is completed, the
system searches for all pages that marked with process_id in Task_List and free them
to be used by another process and then these pages are returned to FPL and AVAIL
is increased by this number of pages. Figure 12 shows paging deallocation process.

Procedure Paging_5D_deallocate(process_id)

begin

for each process in Task_List
if (process.process_id! = process_id)

{

process = Task_list.next();

}

else
break;

end for

Task_List.remove(process);
FPL.add(process.pages);
AVAIL = AVAIL + process.size();

end

Figure (12): paging deallocation process.

15
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3.4 Mapping in

In this section, we describe briefly how mapping is carried out in 5D based on 2D and
3D. When a process is allocated, all its pages are stored in a linear mapping array that
shows the neighbors for each allocated page in the system [35], where the pages that
are allocated for any process are neighbors to each other's in the mapping array and
they can communicate until the process is completed. We convert all the coordinates
of pages to be linear in order to store them easily in the mapping array and also we
convert them back to its original coordinates when that is needed. Figure 13 shows
how conversion is done.

Procedure linear(Page, K) Procedure FiveD(D, K)
begin begin

D =0; Page = EmptyPage( );

D =D+ (K* x Page.x); Page.i = DmodK;
D=D+ (K3 * Page.y); Page.w = (D / K) mod K;
D =D + (K?+ Page.z); Page.z = (D / K*) mod K;
D =D+ (K = Page.w); Page.y = (D / K3) mod K;
D =D + (Page.i); Page.x = (D / K*) mod K;
return D; return Page;

end end

Figure (13): Five dimensions to linear and linear to five dimensions mapping.

16
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Chapter 4: Performance and Evaluation

In this chapter, the simulation has been used to evaluate the performance of the paging
allocation strategy for 5D and its performance has been compared to that of the paging
allocation strategy for 2D, where the results show that the performance of paging for
5D is better than that of paging for 2D in terms of job turnaround time and system
utilization.

4.1 Assumptions :

In this theses, the network topology has been adapted from 2D to 5d and the simulation
experiments have been conducted to evaluate our adapted topology. The system
parameters used are as follows:

Processor allocation strategy is paging.

First-Come-First-Served (FCFS) is used to schedule the system jobs for each network
topology.

Jobs are generated based on uniform distribution with near neighbour communication
in the first evaluation for each network topology (2D, 5D).

Jobs are generated based on uniform decreasing distribution with near neighbour
communication in the second evaluation for each topology (2D, 5D).

Jobs are generated based on uniform distribution with all-to-all communication in the
third evaluation for each network topology (2D, 5D).

Jobs are generated based on uniform decreasing distribution with all-to-all
communication in the fourth evaluation for each network topology (2D, 5D).

System size is 59049 processors and this number is represented as (243 x 234 =
59049) in 2D and (9 x 9 x 9 x 9 x 9 = 59049) in 5D.

4.2 Simulator :

ProcSimity simulation tool [21, 24] is a flexable research tool that has been used to
evaluate processor allocation and job scheduling, and it was developed in University
of Oregon [21, 24]. This tool is developed using C programming language and it is an
open source software. ProcSimity can provide envirmonet that allow reserchers to test
and evaluate any new processor allocation or job scheduling algorithm with clear
results [21, 24]. ProcSimity has been used in many researchs [8, 13, 14, 16, 17, 20,
21, 26, 27, 28, 29, 31, 32, 33, 34, 41, 42], and also there are different versions from
ProcSimity which include more algorithms and more features that supports differents
topologies [36].
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4.3 Why Simulation?

Our system is very huge system, and the cost of real machine is very high. Since there
are two ways to evaluate system performance (analytical and simulation) [25],
simulation was chosen because it is simple, cheap and easy to be used to integrate
any new algorithm within it with minimal cost. Also, the simulation can be used to reflect
the real system behavior.

4.4 Simulation results :

Extensive simulation experiments have been conducted for various system loads to
compare the performance of the suggested paging allocation strategy for 5D with that
of the paging allocation strategy for 2D for the same system size (i.e., the same number
of processors for each tested systems). In this thesis, the paging allocation and
deallocation algorithms have been implemented in C language and integrated into
ProcSimity simulation tool [21, 24]. Our proposed 5D system has been used to
evaluate the paging algorithm, where the system size is 59049 processors that are
represented as 9x9x9x9x9 5D. Also, in this thesis, we adapted the paging algorithm to
be applicable for our proposed system and compared its performance with that of the
paging algorithm for 2D system, where the 2D system has the same number of
processors that are represented as 243 x 243 2D system. Jobs inter-arrival times are
generated exponentialy. Jobs are scheduled on First-Come-First-Served (FCFS) basis
to achive fairness [13, 19, 20, 45]. Its measured by floating point values, but not normal
time units [24]. Job size is generated based on two forms of distribution, the first is
uniform distribution, where job size is ranged from 1 to 59049 and the second
distribution is uniform-decreasing, where job sizes in this distribution are controled by
four ranges ri, r2, rs, and rs with four probabilities p1, p2, ps, and ps and three integer
values Iy, Iz, and |z, where ry = [1: I1], r2 = [li+1: I2], r3 = [lo+1: Is] and rs= [ls+1: L], and L
is 59049 and also p1=0.4, p»=0.2, p3=0.2 and p,=0.2 , and |, =7381, I, = 14762, and I3
= 29524. In uniform-decreasing distribution, most of jobs are small relative to the
system size, and this distribution has been used in the previous studies [6, 7, 10, 11,
13, 19, 20, 33, 46, 48].

4.4.1 Simulation parameters :

Simulation parameters are clarified in table 4.1
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Table 4.1: System Parameters that are used in simulation process.

Simulator Parameter 2D 5D
System Size 59049 59049
Mesh Dimensions 243x243 9x9x9x9x9
Architecture
Allocation Strategy Paging Paging
Page Size 0 0

Scheduling Strategy

Comunication pattern

Job Size Distribution

Inter-arrival Time

Number of Runs

Number of Jobs per Run

First-Come-First-Served
(FCFS)

First-Come-First-Served
(FCFS)

All To All, Near Nighbour

All To All, Near Nighbour

Uniform,
Uniform-Decreasing

Uniform,
Uniform-Decreasing

Exponential with different
values for the mean,
where values selected by
experiments.

Exponential with different
values for the mean,
where values selected by
experiments.

Number of runs is not fixed
but it is determined with
the relative errors do not
exceed 5%.

Number of runs is not fixed
but it is determined with
the relative errors do not
exceed 5%.

1000

1000

Simulation experiments have been conducted with different runs ranged from 50-100
runs and 1000 jobs have been generated in each run. This is to make sure that
confidence level is over 95% and relative error does not exceed 5%.
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4.4.2 Turnaround time :

Turnaround time is the time that the job stays in the system since it enters until it leaves.
Figures 14, 15, 16 and 17 show turnaround time against the system load. In figure 14, 15,
16 and 17 the performance of paging for 5D is superior over that of paging for 2D when
near neighbour communication pattern is used as shown in figures 14 and 15 and when all
to all communication pattern is used as shown in figures 16 and 17. For example, in figures
14, 15, 16 and 17 when the system load is very low, The performance of paging for 5D in
terms of turnaround time is 43% of that of paging for 2D, and this is due to the number of
the processes that is currently in the system is small and hence the performance for both
of the networks is almost the same, but in figure 14 when the system load is 2%, The
performance of paging for 5D in terms of turnaround time is ¢% of that of paging for 2D,
and also in figure 15 when the system load reaches 5%, The performance of paging for 5D
in terms of turnaround time is ¢.A% of that of paging for 2D. In figure 16, we change the
communication pattern to be all to all and 5D is still superior over that of paging for 2D , for
example in figure 16, when the load is 2%, The performance of paging for 5D in terms of
turnaround time is " £% of that of paging for 2D and in figure 17, when the system load
reaches 2%, The performance of paging for 5D in terms of turnaround time is Y% of that
of paging for 2D. Obviously, when the system load is increased, the performance of paging
for 5D is better than that of paging for 2D. The superiority of the paging allocation strategy
on 5D over that on 2D is due to the success of the allocation for the scheduled jobs
whenever the load is increased. This increase in the number of allocated processes
generates more messages between processors and the available messages paths in 2D
is limited which cause congestion in 2D . This congestion can be alleviated when the
network topology is 5D since there are several alternative paths for messages. Moreover,
the distance between the farthest two processors that are allocated to the same process
in 2D is longer than 5D, and hence, the possibility of messages interference from other
processes in 2D is high and this deteriorates the performance in terms of turnaround time.

AVERAGE TURNAROUND TIME

2D Turnaround Time 5D Turnaround Time

35000
30000
25000
20000
15000
10000

TURNAROUND TIME

5000

0 0.01 0.02 0.03 0.04 0.05 0.06
SYSTEM LOAD

Figure (14) turnaround time vs. system load using uniform distribution and
near neighbour communication with 59049 system size.
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AVERAGE TURNAROUND TIME

25000
=—4— 2D Turnaround Time —i—5d Turnaround Time
20000

15000

10000

SYSTEM LOAD

TURNAROUND TIME

Figure (15): turnaround time vs. system load using uniform decreasing
distribution and near neighbour communication with 59049 system size.

AVERAGE TURNAROUND TIME

=¢— 2D Turnaround Time == 5D Turnaround Time

90000
80000
70000 ®
60000
50000
40000
30000
20000
10000

2

TURNAROUND TIME

0 0.005 0.01 0.015 0.02 0.025 0.03
SYSTEM LOAD

Figure (16): turnaround time vs. system load using uniform distribution and
ALL TO ALL communication with 59049 system size.
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AVERAGE TUENAROUND TIME

2D Turnaround Time 5D Turnaround Time
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S 80000
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% 60000
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£ 40000
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2 20000

0

0 0.005 0.01 0.015 0.02 0.025 0.03

SYSTEM LOAD

Figure (17): turnaround time vs. system load using uniform decreasing
distribution and ALL TO ALL communication with 59049 system size.

4.4.3 Performance Impact of Mesh System Size :

Simulation experiments has been carried out for paging allocation strategy on small
system that consists of 1024 processors only , where in case of 2D mesh system k =
32 and n = 2 represented as 32x32 = 1024 and in other hand, in 5D mesh system
k = 4andn = 5 represented as 4x4x4x4x4 = 1024. In this simulation experiments, job
sizes are generated using uniform-decreasing distribution and communication pattern
is near neighbour. Simulation results show that paging allocation strategy on 5D
system still has the superiority over that of paging allocation strategy on 2D system as
shown in figure 18. For example, when system load reaches 5%, the paging allocation
strategy on 5D needs only 65% from that paging allocation strategy in 2D. This
superiority is due to existence of alternative paths for congestion in 5D, shorter links in
5D and lower diameter in 5D, so the possibility of message passing interference
become lower in 5D which decreases the jobs' turnaround time in 5D.
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AVERAGE TUENAROUND TIME

2D Turnaround Time 5D Turnaround Time

16000
14000
12000
10000
8000
6000
4000
2000

TURNAROUN TIME

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
SYSTEM LOAD

Figure (18): turnaround time vs. system load using uniform decreasing
distribution and near nighbour communication with 1024 system size.

4.4.4 Utilization :

Utilization is the percentage of processors that are utilized over time. High utilization is
an indicator for successful allocation and deallocation. Figures 19, 20, 21 and 22 show
the system utilization of paging allocation strategy. In figures 19 and 20, the uniform
and uniform decreasing distributions with near neighbor communication pattern have
been used, and in figures 21 and 22, uniform and uniform decreasing distributions with
ALL to ALL communication pattern have been used. The importance of utilization
appears when the load is increased. 5D interconnection network shows better system
utilization than 2D. In figure 19, for example, the maximum 2D system utilization is 70%
and it is 72% in figure 20. Figures 19 and 20, show that the maximum 5D system
utilization are 75% and 78% respectively. Figure 21 shows that the maximum 2D
system utilization is 68% and it is 66% in figure 22. Figures 21 and 22, show that the
maximum 5D system utilization percentages are 69% and 67% respectively. Better
utilization achieved by successful allocation. The existence of alternative paths for
messages in 5D solved the congestion problem which leads to successful allocation.
Moreover, the distance between the farthest two processors that are allocated to the
same process in 5D is shorter than 2D. Therefore, the possibility of message passing
interference from other processes in 5D is low which leads to a higher utilization.
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SYSTEM UTILIZATION

—¢— 2D Utilization = == 5D Utilization
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SYSTEM LOAD

Figure (19): system utilization vs. system load using uniform distribution and
near neighbour communication with 59049 system size.
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0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
SYSTEM LOAD

Figure (20): turnaround time vs. system load using uniform decreasing
distribution and near neighbour communication with 59049 system size.
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SYSTEM UTILIZATION
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Figure (21): system utilization vs. system load using uniform distribution and
ALL To ALL communication with 59049 system size.
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Figure (22): system utilization vs. system load using uniform decreasing
distribution and ALL To ALL communication with 59049 system size.
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4.5 Conclusion :

The paging allocation strategy on 2D mesh performs successful allocations and
deallocations, but with high average turnaround times and low system utilization. In
this thesis, we adapt the paging allocation strategy to be applicable on 5D
interconnection network and this results in an efficient allocation and hence improves
system performance in terms of both average turnaround time and system utilization.
The performance of the paging allocation strategy on 2D has been compared with that
of the paging allocation strategy on 5D interconnection network. The simulation results
show that when the system size and system load is increased, then the 5D
interconnection network will decrease the average turnaround time and increase the
system utilization. This improvement in performance for the 5D interconnection
network is due to the lower diameter, and hence less communication distance and also
is for the existence of alternative paths for congestion paths.
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Chapter 5: Conclusion and Future Directions

5.1 Summary of the results :

In this thesis, we focused on the developing of the non-contiguous allocation strategy
(paging allocation strategy) on 5D interconnection network. The main results are listed
below:

The results of the previous research suggested that interconnection networks
upgraded for mesh-connected multicomputers are needed. The high average
turnarround time and low system utlization of non-contiguous allocation strategies on
the existing interconnection networks gives us the motivation to upgrade
interconnection networks to a higher dimensional interconnection networks such as
the 5D interconnection network.

To compare the performance of the paging nhon-contiguous allocation strategy on 2D
interconnection networks with that of the adapted paging on 5D interconnection
networks, extensive simulation experiments under a variety of system loads have been
carried out. Our simulation results have exposed that the paging non-contiguous
allocation strategy on 5D interconnection network has better performance than that on
2D interconnection network.

When comparing paging non-contiguous allocation strategy on 2D interconnection
network with the adapted paging on 5D interconnection network, the results show that
for the high system loads, the average turnaround time of jobs for the adapted paging
on 5D is only 5% of that of the paging on 2D. Moreover, the system utilization for the
adapted paging on 5D reaches 78% while the system utilization for the paging on 2D
reaches 72%.

5.2 Future work directions :

Many open problems can be investigated, which are interesting for researchers. The
following are some open problems that are related to our work and can be considered
for further investigation in future.

In our experiments, we use the First-Come-First-Served (FCFS) scheduling but that
would be interesting to use another scheduling methods such as Short-Job-First-
Served (SJFS)[23] and Out-Of-Order (OO)[15].

Our research has been focused on paging allocation strategy, there are many other
strategies that are used widely for non-contiguous allocation, implementing one or
more of them on 5D interconnection network would be interesting.

We chose 5D as a higher dimensional network. What about using higher dimensional
interconnection network such as 6D? That also would be interesting and more
challenging.
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